

# **Explanation-based Learning for NLP Models**

Dong-Ho Lee









## Problem of "label" only dataset

whether a scientist or janitor, **black** people are all obedient brutes … HATE blacks have been programmed to love watermelon … HATE

**black** people from the middle ages have always been watermelon-eating ... **HATE** 

Labeled Dataset (Machine-Generated Data)



## Model may sensitive to spurious correlations

ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection., Hartvigsen et al., ACL 2022



## Labeling Explanation whether a scientist or janitor, **black** people are all obedient brutes ... HATE WHY is this **HATE**? Zaidan et al., 2007 Salient Spans whether a scientist or janitor, black people are all obedient brutes .... Dua et al., 2020 Camburu et al., 2018 Natural Language It implies that black people are submissive. Rajani et al., 2019

Using Annotator Rationales to Improve Machine Learning for Text Categorization., Zaidan et al., NAACL 2007 Benefits of Intermediate Annotations in Reading Comprehension., Dua et al., ACL 2020 e-SNLI: Natural Language Inference with Natural Language Explanation., Camburu et al., NeurIPS 2018 Explain Yourself! Leveraging Language Models for Commonsense Reasoning., Rajani et al., ACL 2019





# Can we leverage explanation?



Leveraging explanation can accelerate model training?
Can we align human explanation with model explanation?



# This Talk



#### RQ1) Label-efficient training with human explanation

#### RQ2) Explanation-based Model Debugging









# Label-Efficient Training with Human Explanation







## Simple Recipe for Modern NLP



**Computing Power** 

Labeled Dataset

Model

Class





## **Expensive Cost of Labeled Data**



**Model** and **Computing power** are transferable across applications, but **labeled data** is not. Humans need to annotate for each application.





# Previous Efforts Toward Label-Efficient Learning







# Capture and Leverage High-level Supervision







# Form of High-level Supervisions (Explanation)







# Form of High-level Supervisions (Explanation)



# TriggerNER (Train)







# TriggerNER (Train)







# TriggerNER (Inference)







# Label Efficiency

NeXT., ICLR 20



Annotation time cost : Label + Explanation ~= 2X label TriggerNER., ACL 20



Annotation time cost : Label + Trigger ~= 1.5X Label





# **Explanation-based Model Debugging**







# LM Performs well on ID Test set

Positive / Negative







# LM Performs well on ID Test set

ID: Identically Distributed







# LM Performs well on ID Test set

ID: Identically Distributed







# LM Performs well on OOD Test set ?

OOD: Out-of-Distribution







# **Bias in NLP Model**

Shortcut Learning



Shortcut Learning in Deep Neural Networks., Geirhos et al., 2020





# **Bias in NLP Model**

### Shortcut Learning



Shortcut Learning in Deep Neural Networks., Geirhos et al., 2020





# **Bias in NLP Model**

Shortcut Learning



Shortcut Learning in Deep Neural Networks., Geirhos et al., 2020



# **Bias in NLP Model**

#### Shortcut Learning -> False Positive -> Social Issue



Shortcut Learning in Deep Neural Networks., Geirhos et al., 2020



# Visualize "shortcut" of the current model



#### Post-hoc Model Explanation

| Model                                                                                                                                                          | 1                                       | ModelInterpretations                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|
| RoBERTa large V                                                                                                                                                |                                         | Model Interpretations What is this?                                    |
| This model is trained on RoBERTa large with the binary classification setting of the Stanford Sentiment Treebank. It achieves 95.11% accuracy on the test set. |                                         | > Simple Gradient Visualization                                        |
|                                                                                                                                                                |                                         | ✓ Integrated Gradient Visualization                                    |
| Demo Model Card Model Usage                                                                                                                                    | Post-hoc                                | See saliency map interpretations generated using Integrated Gradients. |
| Example Inputs                                                                                                                                                 | Explanation                             | Interpret Prediction                                                   |
| Select a Sentence V                                                                                                                                            | , · · · · · · · · · · · · · · · · · · · |                                                                        |
| Sentence                                                                                                                                                       |                                         | SENTENCE                                                               |
| I am a gay black woman.                                                                                                                                        |                                         | <s> I Ĝam Ĝa ligav Ĝblack Ĝwoman . </s>                                |
| Run Model                                                                                                                                                      |                                         | o                                                                      |
|                                                                                                                                                                |                                         | Visualizing the top 3 most important words.                            |
| Model Output Share                                                                                                                                             |                                         |                                                                        |
| The model is <b>very confident</b> that the sentence has a <b>negative</b> sentiment.                                                                          |                                         | > Smooth Gradient Visualization                                        |

https://demo.allennlp.org/sentiment-analysis/roberta-sentiment-analysis





# IDEA: Human feedback on Model Explanation

| Model                                                                                                                                                          |             | Model Interpretations What is this?                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|
| RoBERTa large V                                                                                                                                                |             | What is this?                                                          |
| This model is trained on RoBERTa large with the binary classification setting of the Stanford Sentiment Treebank. It achieves 95.11% accuracy on the test set. |             | > Simple Gradient Visualization                                        |
|                                                                                                                                                                |             | ✓ Integrated Gradient Visualization                                    |
| Demo Model Card Model Usage                                                                                                                                    | Post-hoc    | See saliency map interpretations generated using Integrated Gradients. |
| Example Inputs                                                                                                                                                 | Explanation | Interpret Prediction                                                   |
| Select a Sentence V                                                                                                                                            |             |                                                                        |
| Sentence                                                                                                                                                       |             | SENTENCE                                                               |
| I am a gay black woman.                                                                                                                                        |             | <s> I Ĝam Ĝa lizza Gblack Ĝwoman . </s>                                |
| Run Model                                                                                                                                                      |             | Hey Model                                                              |
|                                                                                                                                                                |             | You should not focus on this word!                                     |
| Model Output Share                                                                                                                                             |             |                                                                        |
| The model is <b>very confident</b> that the sentence has a <b>negative</b> sentiment.                                                                          |             | > Smooth Gradient Visualization                                        |





## XMD

An End-to-End Framework for Interactive Explanation-based Debugging of NLP Models



https://inklab.usc.edu/xmd/

















#### ation Generation & Visualization Instance Explanation Visualization Instance Ranking UI Explanation Train Data Generation on Train Data Train Task Explanation Visualization Pattern Ag Trained Model บ 🔶 🔶 บ Click instance explanation to add/remove Regularize Click task explanation USER to add / remove Explanation-based Model Debugging



# **Explanation Generation**

Local Post-hoc Explanation (Integrated Gradients)



$$\mathsf{IntegratedGrads}_i(x) ::= (x_i - x'_i) \times \int_{\alpha=0}^1 \frac{\partial F(x' + \alpha \times (x - x'))}{\partial x_i} \, d\alpha$$

Axiomatic Attribution for Deep Networks., Sundarajan et al., 2017





## Instance-level Explanation



(a) As a user clicks on a word in the sentence, pop-up displaying operation options and a user selects an appropriate operation for that word.



(b) Once the user selects an operation for the selected word, that word in the model output section is marked with an operation symbol (remove: X, add: +).





## **Task-level Explanation**



(a) As a user clicks on a word in the list of global explanations in the left panel, examples containing that word are displayed. The user can select the appropriate operation for the word.



(b) After the operation for a word is selected, the word in the left panel is marked with a color of the operation.



#### **Explanation Generation & Visualization** Instance Explanation Visualization Instance Ranking UI Explanation Train Data Generation on Train Data Train Task Explanation Visualization Pattern Ag Trained Model บ 🔶 🔶 บ Click instance explanation to add / remove Regularize Click task explanation USER to add / remove Explanation-based Model Debugging

Task: SST-2 / Label Space: [Positive, Negative]

**Explanation Regularization** 

| Step                                            |                                                                             |     |      |      |     |       |     | Pred c   |
|-------------------------------------------------|-----------------------------------------------------------------------------|-----|------|------|-----|-------|-----|----------|
|                                                 | Train instance                                                              | I   | am   | а    | gay | black | man | Negative |
| 1. Train Model &<br>2. Run Post-hoc Explanation | Attribution score <sup>⊘</sup> ^c (p)<br>toward " <mark>Prediction</mark> " | 0.1 | 0.05 | 0.05 | 0.4 | 0.3   | 0.1 |          |
| 3. Get human feedback                           | Human selection                                                             |     |      |      | del | del   |     |          |
| 4. Compute ER term & 5. Re-train Model          | Regularized attribution score t_p^c                                         | 0.1 | 0.05 | 0.05 | 0   | 0     | 0.1 |          |

Explanation Regularization (ER) Term = 
$$L_{ER} = \sum_{p \in x} (\phi^c(p) - t_p^c)^2$$
  
Re-train the model with new loss term =  $L = L + L_{ER}$ 

#### USC Viterbi School of Engineering





## Instance-level Explanation Regularization

Label *c* : Hate





# Task-level Explanation Regularization









## **Experimental Results**

| Regularize | ER Loss | Sentiment Analysis |                     |      |             |  |
|------------|---------|--------------------|---------------------|------|-------------|--|
|            |         | In-distribution    | Out-of-Distribution |      |             |  |
|            |         | SST                | Amazon              | Yelp | Movies      |  |
| None       | None    | 93.4               | <u>89.1</u>         | 89.0 | 82.0        |  |
| Correct    | MSE     | 94.7               | 88.4                | 91.8 | 94.5        |  |
|            | MAE     | <u>94.0</u>        | 92.3                | 94.4 | <u>94.0</u> |  |

Table 1: **Instance Explanation** ID/OOD Performance (Accuracy). Best models are bold and second best ones are underlined within each metric.

| Regularize | ER Loss | Hate Speech Analysis |                     |      |             |  |  |
|------------|---------|----------------------|---------------------|------|-------------|--|--|
|            |         | In-distribution      | Out-of-Distribution |      |             |  |  |
|            |         | STF                  | HatEval             | GHC  | Latent      |  |  |
| None       | None    | 89.5                 | 88.2                | 64.5 | 67.2        |  |  |
| Correct    | MSE     | 89.2                 | 90.1                | 62.3 | 67.9        |  |  |
|            | MAE     | 89.1                 | 90.1                | 59.3 | 64.9        |  |  |
| Incorrect  | MSE     | 88.9                 | 86.3                | 67.9 | 70.3        |  |  |
|            | MAE     | 89.3                 | 88.8                | 64.2 | 67.6        |  |  |
| ALL        | MSE     | 90.0                 | 88.4                | 63.8 | 67.0        |  |  |
|            | MAE     | <u>89.7</u>          | 86.9                | 66.5 | <u>70.2</u> |  |  |

Table 2: **Task Explanation** ID/OOD Performance (Accuracy). Best models are bold and second best ones are underlined within each metric.

Generalize well to Out-of-Distribution data





# Q & A

