

Making Large Language Models Better **Data Creators**

Dong-Ho Lee, Jay Pujara, Mohit Sewak, Ryen W. White, Sujay Kumar Jauhar

Create a **train data** for training a model aimed at ...

LLM

Create a **train data** for training a model aimed at ...

Generating coherent response for instruction-following Self-Instruct (Wang et al, 2023), Alpaca, Vicuna ...

LLM

Create a **train data** for training a model aimed at ...

Generating coherent response for instruction-following

Generating action sequence for agents

Self-Instruct (Wang et al, 2023), Alpaca, Vicuna ...

Lumos (Yin et al., 2023)

LLM

Create a **train data** for training a model aimed at ...

Generating coherent response for instruction-following

Generating action sequence for agents

Generating correct answer for the target task

Self-Instruct (Wang et al, 2023), Alpaca, Vicuna ... Lumos (Yin et al., 2023) LLM SuperGen (Meng et al., 2022), ZeroGen (Ye et al., 2022

Our focus

Create a **train data** for training a model aimed at ...

Generating coherent response for instruction-following

Generating action sequence for agents

Generating correct answer for the target task

Importance of creating train data for generating correct answer for the target task

How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources, Wang et al., 2023

Importance of creating train data for generating correct answer for the target task

Task correctness != Coherent response

How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources, Wang et al., 2023

Existing Works

GPT3Mix: Leveraging Large-Scale Language Models for Text Augmentation., Yoo et al., 2021 Want to Reduce Labeling Cost? GPT-3 can help., Wang et al., 2021 Co-training Improves Prompt-based Learning for Large Language Models., Lang et al., 2022

Existing Works

GPT3Mix: Leveraging Large-Scale Language Models for Text Augmentation., Yoo et al., 2021 Want to Reduce Labeling Cost? GPT-3 can help., Wang et al., 2021 Co-training Improves Prompt-based Learning for Large Language Models., Lang et al., 2022

Existing Works LLM as Generators

Generating Training Data with Language Models: Towards Zero-shot Language Understanding., Meng et al., 2022 ZeroGen: Efficient Zero-shot Learning via Dataset Generation., Ye et al., 2022 Self-guided Noise-Free Data Generation for Efficient Zero-shot Learning., Gao et al., 2022

Existing Works LLM as **Generators**

Generating Training Data with Language Models: Towards Zero-shot Language Understanding., Meng et al., 2022 ZeroGen: Efficient Zero-shot Learning via Dataset Generation., Ye et al., 2022 Self-guided Noise-Free Data Generation for Efficient Zero-shot Learning., Gao et al., 2022

Existing Works LLM as **Generators**

Generating Training Data with Language Models: Towards Zero-shot Language Understanding., Meng et al., 2022 ZeroGen: Efficient Zero-shot Learning via Dataset Generation., Ye et al., 2022 Self-guided Noise-Free Data Generation for Efficient Zero-shot Learning., Gao et al., 2022

Select **seed data** for the next generation step.

Selection Strategy

BFS

Random selection: randomly select the seed data **Similar / Contrastive selection**: select the seed data by computing sentence similarity between the pervious seed and the generated examples. **Tree selection**: All the generated examples become the seed data for the next generation

Selection Strategy DES vs. BES

Large depth / Small width: Huge distance between the <u>initial formatting example</u> and generated examples Large diversity, but small task consistency

Small depth / Large width: Small distance betweenthe initial formatting exampleexamplesLarge task consistency, but small diversity21

Category	Data Name	# Train data
Multiple-choice QA (# Choices: 2)	PIQA	14,113
	WinoGrande	160
Multiple-choice QA (# Choices: 5)	CommonsenseQA	8,500
	RiddleSense	3,510
Open-book Yes/No QA	BoolQ	9,427
	PubMedQA	450
	BioASQ	670
Closed-book Yes/No QA	BoolQ	9,427
	StrategyQA	2,061
	CREAK	10,176

For each data,

1. Select one **formatting example** from the **train data**.

22

Category	Data Name	# Train data
Multiple-choice QA (# Choices: 2)	PIQA	14,113
	WinoGrande	160
Multiple-choice QA (# Choices: 5)	CommonsenseQA	8,500
	RiddleSense	3,510
Open-book Yes/No QA	BoolQ	9,427
	PubMedQA	450
	BioASQ	670
Closed-book Yes/No QA	BoolQ	9,427
	StrategyQA	2,061
	CREAK	10,176

For each data,

- Select one <u>formatting</u> <u>example</u> from the <u>train data</u>.
- 2. generate data until the number of generated data reaches the same number of train data.
 - Discard ill-formatted data automatically with json.loads()

23

Category	Data Name	# Train data
	PIQA	14,113
Multiple-choice QA (# Choices: 2)	WinoGrande	160
Multiple sheige OA (# Chaisses 5)	CommonsenseQA	8,500
Multiple-choice QA (# Choices: 5)	RiddleSense	3,510
Open-book Yes/No QA	BoolQ	9,427
	WinoGrande CommonsenseQA RiddleSense	450
	BioASQ	670
	BoolQ	9,427
Closed-book Yes/No QA		2,061
-		10,176

For each data,

- Select one <u>formatting</u> <u>example</u> from the <u>train data</u>.
- 2. generate data until the number of generated data reaches the same number of train data.
 - Discard ill-formatted data automatically with json.loads()

24

Train & Test with RoBERTa-large.

In-distribution Performance

Original Train data

Human-labeled train data always shows the best performance.

In-distribution Performance

Generated data from one single formatting example

In-distribution Performance

Generated data from one single formatting example

Sometimes Tree (BFS) shows better than Human-labels

Category	Data Name	# Train data
	PIQA	14,113
Multiple-choice QA (# Choices: 2)	WinoGrande	160
Multiple-choice QA (# Choices: 5)	CommonsenseQA	8,500
	RiddleSense	3,510
	BoolQ	9,427
Open-book Yes/No QA	PubMedQA	450
	BioASQ	670
Closed-book Yes/No QA	BoolQ	9,427
	StrategyQA	2,061
	CREAK	10,176

How about the **out-of-distribution** performance?

- Generate data starting from the seed in **CommonsenseQA** Train the model
 - I rain the model
- 3. Test on RiddleSense

Out-of-distribution Performance

Conclusion

- Example-based data creation has a **flexibility** to create a task-specific 1. data.
- 2. BFS-style data creation is better than DFS-style data creation.
 - low semantic distance between the seed and created instances is a. important.
- Models trained on LLM-created data are showing strong 3. generalizability.
 - a. Real-world systems often deal with inputs that are very different from carefully curated academic datasets 30

Dong-Ho Lee, Jay Pujara, Mohit Sewak, Ryen W. White, Sujay Kumar Jauhar

https://github.com/microsoft/llm-data-creation