

Improving Language Models through Context

Dong-Ho Lee

Thesis Defense (April 28, 2025)

Professor Jay Pujara (Chair) Professor Xiang Ren Professor Robin Jia Professor Fred Morstatter Professor Meisam Razaviyayn **Ambiguity** in Human-AI Communication

Is this positive or negative sentiment?

\$

Final exam is the best gift on my birthday.

Is this positive or negative sentiment?

Final exam is the best gift on my birthday

The sentiment of the statement is **positive.** The use of "best gift"

suggests a positive connotation, implying that the speaker finds joy or humor in the situation, even if it's slightly ironic.

Introduction: 1/11

What if we have **context**?

Is this sarcasm or not?

Final exam is the best gift on my birthday

S Yes, th

\$

Yes, this is likely sarcasm. The phrase suggests a mismatch between the expectation of a birthday gift being something enjoyable and the reality of having a final exam, which most people would not consider a "gift." This contrast

creates the sarcastic tone.

Flipped !

Is this positive or negative sentiment?

Final exam is the best gift on my birthday

The sentiment is **negative**, despite the phrasing appearing positive at face value.

The sarcasm in the statement conveys dissatisfaction or frustration, implying

that having a final exam on one's birthday is far from ideal or enjoyable.

Context

What are the examples of helpful context for AI?

Is this positive or negative sentiment?

Final exam is the best gift on my birthday.

Human Explanation

The speaker uses sarcasm to express frustration, implying negative sentiment about having a final exam on their birthday. What are the examples of helpful context for AI?

Is this positive or negative sentiment?

Final exam is the best gift on my birthday.

Human Explanation

The speaker uses sarcasm to express frustration, implying negative sentiment about having a final exam on their birthday.

Task Examples

Positive example:

Spending time with my family was the best gift on my birthday.

Negative example:

Getting laid off is the best present on my anniversary. What are the examples of helpful context for AI?

Is this positive or negative sentiment?

Final exam is the best gift on my birthday.

Human Explanation

The speaker uses sarcasm to express frustration, implying negative sentiment about having a final exam on their birthday.

Dialogue, Self-Guided (CoT), ...

Task Examples

Positive example:

Spending time with my family was the best gift on my birthday.

Negative example:

Getting laid off is the best present on my anniversary.

Research Questions

- What specific types of context can be used to improve model predictions?
- For which tasks does context effectively enhance performance, and for which does it have limited or no benefit?
- Does explicitly **training language models with contextual information** improve their overall performance?
- Can language models autonomously **generate context** to improve their own outputs?

Goals

• Context-aware inference in language models.

Can LMs effectively use context during inference to improve performance on various tasks?

• Contextual supervision for language model training

Does incorporating context during training enhance model behavior?

• Language models as self-refining context generators

Can LMs generate and refine context autonomously, to improve their own downstream outputs?

Context Framework

PhD Journey

Different Types of Context

[FewNER] Good Examples Make A Faster Learner: Simple Demonstration-based Learning for Low-Resource NER., Lee et al., 2022

[Data-Creation] Making Large Language Models Better Data Creators., Lee et al., 2023

[TKG-LLM] Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context Learning., Lee et al., 2023 [STAR] STAR: A SImple Training-free Approach for Recommendations using Large Language Models., Lee et al., 2024

[NormVio-RT] Analyzing Norm Violations in Live-Stream Chat., Lee et al., 2023

[TriggerNER] TriggerNER: Learning with Entity Triggers as Explanations for Named Entity Recognition., Lee et al., 2020 [LEAN-LIFE] LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation., Lee et al., 2020

[AutoTriggER] AutoTriggER: Label-Efficient and Robust Named Entity Recognition with Auxiliary Trigger Extraction., Lee et al., 2023

[XMD] XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models., Lee et al., 2023

[REALTALK] REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation, Lee et al., 2025

[QUEST] What is a Good Question? Utility Estimation with LLM-based Simulations., Lee et al., 2025

PhD Journey

Context Frameworks

[Data-Creation] Making Large Language Models Better Data Creators., Lee et al., 2023 [TKG-LLM] Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context Learning., Lee et al., 2023 [STAR] STAR: A SImple Training-free Approach for Recommendations using Large Language Models., Lee et al., 2024 [NormVio-RT] Analyzing Norm Violations in Live-Stream Chat., Lee et al., 2023 [TriggerNER] TriggerNER: Learning with Entity Triggers as Explanations for Named Entity Recognition., Lee et al., 2020 [LEAN-LIFE] LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation., Lee et al., 2020 [AutoTriggER] AutoTriggER: Label-Efficient and Robust Named Entity Recognition with Auxiliary Trigger Extraction., Lee et al., 2023 [XMD] XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models., Lee et al., 2023 [REALTALK] REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation, Lee et al., 2025

[FewNER] Good Examples Make A Faster Learner: Simple Demonstration-based Learning for Low-Resource NER., Lee et al., 2022

[QUEST] What is a Good Question? Utility Estimation with LLM-based Simulations., Lee et al., 2025

PhD Journey

Context Frameworks

[FewNER] Good Examples Make A Faster Learner: Simple Demonstration-based Learning for Low-Resource NER., Lee et al., 2022

[Data-Creation] Making Large Language Models Better Data Creators., Lee et al., 2023

[TKG-LLM] Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context Learning., Lee et al., 2023

[STAR] STAR: A Simple Training-free Approach for Recommendations using Large Language Models., Lee et al., 2024

[NormVio-RT] Analyzing Norm Violations in Live-Stream Chat., Lee et al., 2023

[TriggerNER] TriggerNER: Learning with Entity Triggers as Explanations for Named Entity Recognition., Lee et al., 2020 [LEAN-LIFE] LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation., Lee et al., 2020

[LEAN-LIFE] LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation., Lee et al., 2020 [AutoTriggER] AutoTriggER: Label-Efficient and Robust Named Entity Recognition with Auxiliary Trigger Extraction., Lee et al., 2023

[XMD] XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models., Lee et al., 2023

[REALTALK] REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation., Lee et al., 2025

[QUEST] What is a Good Question? Utility Estimation with LLM-based Simulations., Lee et al., 2025

Introduction: 11/11

RQ1. Can models learn from context?

Can LMs effectively use context during inference to improve performance on various tasks?

Temporal Knowledge Graph Forecasting Without Knowledge using In-context Learning., Dong-Ho Lee*, Kian Ahrabian*, Woojeong Jin, Fred Morstatter, Jay Pujara., EMNLP 2023

REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation., Dong-Ho Lee*, Adyasha Maharana*, Jay Pujara, Xiang Ren, Francesco Barbieri., In submission to ACL 2025 Can LMs learn from context to solve the task?

Define helpful context

In-context Learning

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

5% in Finland. // Finance They defeated ... in the NFC Championship Game. // Sports Apple ... development of in-house chips. // Tech

Circulation revenue has increased by

The company anticipated its operating profit to improve. // _____

ICL with task examples Classification task with 1-shot example

Language models are few-shot learners., Brown et al., 2020

Rethinking the role of demonstrations: What makes in-context learning work?., Min et al., 2023

Beyond In-context Learning with Task Examples Extrapolation

Super Bowl champion in 2001 is Baltimore. Super Bowl champion in 2002 is New England. Circulation revenue has increased by 5% Circulation revenue has increased by Super Bowl champion in 2003 is Tampa Bay. in Finland, // Positive 5% in Finland. // Finance Super Bowl champion in 2020 is Kansas City. Panostaia did not disclose the purchase They defeated ... in the NFC Super Bowl champion in 2021 is Tampa Bay. price. // Neutral Championship Game. // Sports Super Bowl champion in 2022 is Los Angeles. Paying off the national debt will be Apple ... development of in-house Super Bowl champion in 2023 is Kansas City. extremely painful. // Negative chips. // Tech Super Bowl champion in 2024 is The company anticipated its operating The company anticipated its operating profit to improve. // _____ profit to improve. // Akib I'm so stressed about my interview on Friday. Elise Ugh, I totally feel you. You've got this! Day 2 ICL with task examples Day 10 Hey, how did Classification task with 1-shot example the interview go? It didn't work out ...

You are Elise. Continue the conversation.

Contextual Extrapolation

I'm so bummed right now.

Super Bowl champion in 2000 is St Louis.

Part 1 Overview: 3/4

Preview: Inference with Context

Define helpful context.

Structural Extrapolation

Can LMs learn **patterns** from **historical context** to predict event ?

You are {Speaker}. Continue the conversation.

Semantic Extrapolation

Can LMs learn **user persona** from **dialogue context** to simulate user ?

Temporal Knowledge Graph Forecasting Without Knowledge using In-context Learning., Dong-Ho Lee*, Kian Ahrabian*, Woojeong Jin, Fred Morstatter, Jay Pujara., EMNLP 2023

REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation Dong-Ho Lee, Adyasha Maharana*, Jay Pujara, Xiang Ren, Francesco Barbieri., In submission to ACL 2025

RQ1-1. Can LMs learn patterns from historical context to predict event?

Temporal Knowledge Graph Forecasting Without Knowledge using In-context Learning., Dong-Ho Lee*, Kian Ahrabian*, Woojeong Jin, Fred Morstatter, Jay Pujara., EMNLP 2023 Can LMs learn patterns from historical context to predict event?

Define helpful context

Can LMs learn patterns from historical context to predict event ?

History

Super Bowl champion in 2000 is St Louis. Super Bowl champion in 2001 is Baltimore. Super Bowl champion in 2002 is New England. Super Bowl champion in 2003 is Tampa Bay.

Super Bowl champion in 2020 is Kansas City. Super Bowl champion in 2021 is Tampa Bay. Super Bowl champion in 2022 is Los Angeles. Super Bowl champion in 2023 is Kansas City. Super Bowl champion in 2024 is _____

Methodology

Construct prompt

LMs learn patterns in the context.

Because:

- **Finding 1.** LMs can outperform supervised models without training by using context.
- **Finding 2.** LMs use context effectively without relying on semantic priors.
- **Finding 3.** LMs learn diverse patterns from the context beyond just frequency and recency.

LMs can outperform supervised models without training.

LMs use context effectively without relying on semantic priors.

Category	Prompt
$\overbrace{\mathcal{L}(\cdot)}^{\text{Lexical}}$	 2000: [Superbowl, Champion, 0. St Louis] 2001: [Superbowl, Champion, 1. Baltimore] 2023: [Superbowl, Champion,

LMs use context effectively without relying on semantic priors.

What if we **mask certain words that have semantic content** (e.g., names, event titles, relation labels) and replace them with arbitrary indices that have no inherent meaning?

LMs use context effectively without relying on semantic priors.

Results for "Lexical" and "Index" are similar.

LMs learn diverse contextual patterns beyond just frequency and recency.

Similar Findings (Structural Extrapolation) from Other Paper

Structural Extrapolation

Model identifies and extends patterns in sequential input without necessarily understanding their semantic meaning.

LLMs can serve as general sequence modelers, driven by in-context learning.

RQ1-2. Can LMs learn user persona from dialogue context to simulate user?

REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, Francesco Barbieri., In submission to ACL 2025

Can LMs learn user persona from dialogue context to simulate user?

You are {Speaker}. Continue the conversation.

Can LMs learn user persona from dialogue context to simulate user?

Akib I'm so stressed about Prediction my interview on Friday. Elise Sorry to hear that, but I'm Ugh, I totally feel you. **___** glad you're staying positive! You've got this! Day 2 V.S. Day 10 Hey, how did the interview go? Ground truth (Original) It didn't work out... Aw man, that sucks. I'm so bummed right now.

You are Elise. Continue the conversation.

REALTALK: 2/17

Can LMs learn user persona from dialogue context to simulate user?

Akib

We need a long conversation where the persona remains consistent throughout.

Longitudinal Dialogues in the Wild

A 21-day Real-World Dataset for Long-Term Conversation

Dataset	Dialogue Participants	# Turns / C	# Session / C	# Tokens / C	Multimodal	Collection	
MemoryBank (Zhong et al., 2024)	Human-AI	3.7	10	257.8	x	LLM-simulated	
LongMemEval (Wu et al., 2024)	Human-AI	9.8	50.2	1,572.3	x	LLM-simulated	
SODA (Kim et al., 2023a)	Human-Human	7.6	1	122.4	×	LLM-simulated	
Conversation Chronicles (Jang et al., 2023b)	Human-Human	58.5	5	1,054.7	×	LLM-simulated	
LoCoMo (Maharana et al., 2024)	Human-Human	588.2	27.2	13,377.2	✓	LLM-simulated	
MPChat (Ahn et al., 2023)	Human-Human	2.8	1	53.3	✓	Reddit	
MMDialog (Feng et al., 2022)	Human-Human	4.6	1	72.5	✓	Social media	
Daily Dialog (Li et al., 2017)	Human-Human	7.9	1	114.7	×	Crowdsourcing	
MSC (Xu et al., 2022)	Human-Human	53.3	4	1.225.9	×	Crowdsourcing	
REALTALK	Human-Human	894.4	21.9	17,109.8	1	Crowdsourcing	

The longest crowd-sourced human-human conversation

Evaluating Very Long-Term Conversational Memory of LLM Agents.,

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, Yuwei Fang., ACL 2024

REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation

Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, Francesco Barbieri., In submission to ACL 2025

Longitudinal Dialogues in the Wild

A 21-day Real-World Dataset for Long-Term Conversation

Name	Job	City	Age	Chat	# days	# words	# words / day	Images	Topics
Emi	College student	New York	20	Emi + Elise	21	17341	826	35	6
Elise	College student	Houston	21	Elise + Kevin	21	16040	764	46	7
Kevin	College student	Houston	18	Kevin + Paola	16	11057	691	35	7
Paola	College student	Cambridge	21	Paola + Emi	16	11511	719	37	6
Nebraas	Vet technician	New York	24	Nicolas + Nebraas	21	16902	805	37	7
Nicolas	College student	New York	23	Vanessa + Nicolas	21	18005	857	39	8
Vanessa	Vet technician	New York	24	Vanessa + Nebraas	21	16343	778	43	8
Mohammed	College student	New York	23	Akib + Muhammed	21	17191	819	25	6
Syed	College student	New York	23	Fahim + Akib	21	18089	861	27	7
Fahim	College student	New York	19	Fahim + Muhammed	21	16951	807	23	8

- Two people talk each other for 21 days through **Whatsapp**.
- Each participant involves in two conversations.

Research Question

Data Analysis

- 1. How do authentic human dialogues differ from LLM-simulated ones?
- 2. Does an individual maintain a consistent persona when talking to other people?

Persona Simulation (Semantic Extrapolation)

3. Can models accurately simulate an individual's unique persona?

How do authentic human dialogues differ from LLM-simulated ones?

Evaluating Very Long-Term Conversational Memory of LLM Agents.,

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, Yuwei Fang., ACL 2024

REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation

Dong-Ho Lee*, Adyasha Maharana*, Jay Pujara, Xiang Ren, Francesco Barbieri., In submission to ACL 2025
Message-level Emotional Intelligence

Speaker-level Emotional Intelligence

Speaker-level Emotional Intelligence

- **Reflective frequency**: Average
 - How often the speaker uses reflective language.
- Grounding frequency: Average
 - How often the speaker uses clarifying or follow-up questions.
- Empathy: Average
 - Average empathy score across all the speaker's messages.
- Emotion / Sentiment diversity: Entropy
 - The range of emotions or sentiments expressed in the speaker's messages.
- Intimacy Progression: Curve Inclination
 - How intimacy develops over time.

Speaker-level Emotional Intelligence

- Humans exhibit greater emotion and sentiment diversity.
- LLMs show excessive empathy.
- Humans show high variance in overall El attributes, while LLMs are uniform.
 - (Align with other work (<u>Lee et al., 2024</u>))

Does an individual maintain a consistent persona across multiple chats?

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

0.0

Speaker-level Emotional Intelligence

Absolute difference between two conversations from the same speaker

- Some participants maintain stable persona while others not.
- Intimacy progression shows the most variation → It is highly influenced by who they talk with.

You are Elise. Continue the conversation.

In-context Learning

gpt-4o-mini

You are Elise. Continue the conversation.

Add more context \rightarrow Cannot improve the simulation performance.

In-context Learning

You are Elise. Continue the conversation.

Model may struggle with semantic extrapolation.

Bonus: Fine-tune

What if we train Akib's messages exclusively?

Bonus: Fine-tune

The mean performance across 10 distinct persona fine-tuning simulations (OpenAl Fine-tuning API w/ gpt-4o-mini)

	Content Similarity		Message-level EI (Emotional Intelligence)					
	Lexical ↑	Semantic ↑	Reflective ↑	Grounding \uparrow	Sentiment \uparrow	Emotion \uparrow	Intimacy \downarrow	Empathy \downarrow
w/o fine-tune w/ fine-tune	0.136 0.138	0.76 0.778	0.623 0.769	0.396 0.619	0.529 0.587	0.427 0.464	0.061 0.073	1.8 1.238

- Fine-tuning captures speaker's style.
 - emotion, sentiment, empathy, reflective, grounding
- Fine-tuning cannot improve content similarity.
- Fine-tuning does not improve intimacy, as intimacy depends on who they talk with.

Conclusion: Inference with Context

Super Bowl champion in 2000 is St Louis. Super Bowl champion in 2001 is Baltimore. Super Bowl champion in 2002 is New England. Super Bowl champion in 2003 is Tampa Bay.

Super Bowl champion in 2020 is Kansas City. Super Bowl champion in 2021 is Tampa Bay. Super Bowl champion in 2022 is Los Angeles. Super Bowl champion in 2023 is Kansas City. Super Bowl champion in 2024 is _____

Yes, LMs learn patterns from historical context.

You are Elise. Continue the conversation.

No, LMs do not learn **user persona** from **dialogue context**.

Evaluating Very Long-Term Conversational Memory of LLM Agents.,

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, Yuwei Fang., ACL 2024

REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation

Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, Francesco Barbieri., In submission to ACL 2025

RQ2. Does training models with context improve their performance?

XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models Dong-Ho Lee, Akshen Kadakia, Brihi Joshi, Aaron Chan, Ziyi Liu, Kiran Narahari, Takashi Shibuya, Ryosuke Mitani, Toshiyuki Sekiya, Jay Pujara, Xiang Ren., ACL 2023 Demo Does training models with context improve their performance?

User selects helpful context

Preview: Train LMs with Context

Does human explanation help debugging the model?

XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models Dong-Ho Lee, Akshen Kadakia, Brihi Joshi, Aaron Chan, Ziyi Liu, Kiran Narahari, Takashi Shibuya, Ryosuke Mitani, Toshiyuki Sekiya, Jay Pujara, Xiang Ren., ACL 2023 Demo *Slide contains harmful contents (Example is from the existing dataset.)

Preview: Train LMs with Context

Words	Ground truth: Hate	
All muslims are t	rrorists and need to be deported from this country	
Model Output	Prediction: Hate	
word wor	word	
All muslims a	e terrorists and need to be deported from this count	ry
add	vel reset	

Human explanation helps debugging & improving the model.

XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models Dong-Ho Lee, Akshen Kadakia, Brihi Joshi, Aaron Chan, Ziyi Liu, Kiran Narahari, Takashi Shibuya, Ryosuke Mitani, Toshiyuki Sekiya, Jay Pujara, Xiang Ren., ACL 2023 Demo

Part 2 Overview: 3/3

LMs perform well on ID Test set

ID: Identically Distributed

Positive / Negative

LMs perform well on ID Test set

ID: Identically Distributed

Positive / Negative

Bias in NLP Model

Shortcut Learning

Bias in NLP Model

Shortcut Learning

Rich veins of **funny** stuff in this movie! (**Positive**) Is pretty **funny**. (**Positive**) Very **funny** film (**Positive**)

Bias in NLP Model

Shortcut Learning

Rich veins of **funny** stuff in this movie! (**Positive**) Is pretty **funny**. (**Positive**) Very **funny** film (**Positive**)

\$40 million failure with failed attempts at being **funny** (Negative)

Training Solutions

Perform well on training set.

Shortcut Solutions

Perform well on training set & i.d test set

Intended Solutions

Perform well on training set & i.d test set and all relevant test sets.

Visualize Shortcut of Model

Post-hoc Model Explanation

RoBERTa large	~
This model is trained on RoBE	RTa large with the binary classification setting of the Stanford
	es 95.11% accuracy on the test set.

Sentence	
I am a gay black woman.	
Run Model	

Visualize Shortcut of Model

Post-hoc Model Explanation

RoBERTa large	~
This model is trained on RoBERTa large with the binary cla	ssification setting of the Stanford
Sentiment Treebank. It achieves 95.11% accuracy on the to	est set.
am a gay black woman.	
am a gay black woman.	

Model Output	Share
The model is very confident that the sentence has a negative sentiment.	

Why does it classify the sentiment as **negative** ?

Visualize Shortcut of Model

Post-hoc Model Explanation

Model	Model Interpretations What is this?
RoBERTa large V	> Simple Gradient Visualization
This model is trained on RoBERTa large with the binary classification setting of the Stanford Sentiment Treebank. It achieves 95.11% accuracy on the test set.	Integrated Gradient Visualization
	See saliency map interpretations generated using Integrated Gradients.
Sentence	Interpret Prediction
I am a gay black woman.	SENTENCE
Run Model	SENTENCE Sentence Sentence Sentence Gan Ga Ggay Gblack Gwoman .
Model Output Share	Viewalizing the ten 2 most immentant and
Share	This word causes the model
The model is very confident that the sentence has a negative sentiment.	to classify the sentence as a
	"negative" sentiment.

Human Explanation as a Contextual Information

Can we align human explanation with model explanation? (Re-train the model)

Model	Model Interpretations What is this?
RoBERTa large V	> Simple Gradient Visualization
This model is trained on RoBERTa large with the binary classification setting of the Stanford Sentiment Treebank. It achieves 95.11% accuracy on the test set.	✓ Integrated Gradient Visualization
	See saliency map interpretations generated using Integrated Gradients.
Sentence	Interpret Prediction
l am a gay black woman.	
Run Model	sentence
Model Output Share	Visualizina tha tan 2 maat impartanti anda
	– Hey Model,
The model is very confident that the sentence has a negative sentiment.	You should not focus on
	his word!

Human Explanation as a Contextual Information

XMD: An End-to-End Framework for Interactive Explanation-based Debugging of NLP Models

Explanation Generation

Local Post-hoc Explanation (Integrated Gradients = IG)

$$\mathsf{IntegratedGrads}_i(x) ::= (x_i - x'_i) \times \int_{\alpha=0}^1 \frac{\partial F(x' + \alpha \times (x - x'))}{\partial x_i} \, d\alpha$$

- *x*: Original input (Panda)
- x': Baseline input (Black)
- F: Model prediction function
- *dF/dxi* : Partial derivative showing how sensitive the model prediction is to each input feature

Get Human Explanation through UI

(a) As a user clicks on a word in the sentence, pop-up displaying operation options and a user selects an appropriate operation for that word.

Prediction: Hate

Model Output

Train Model with Explanation

Explanation Regularization = Align human explanation with model explanation

Task: SST-2 (Sentiment Analysis) / Label Space: [Positive, Negative]

	Explanation Generation & Visualization
UI Train Data	Explanation Instance Ranking Visualization
Train	Generation on Train Data Pattern Aggregation Visualization
Trained Model	Click instance explanation to add/remove
ative]	Regularize Click task explanation to add / remove USER Explanation-based Model Debugging

Step								Pred c
	Train data	I	am	а	gay	black	man	<mark>Negative</mark>
1. Train Model 2. Post-hoc Explanation	IG score ∞^c (p) toward " <mark>Prediction</mark> "	0.1	0.05	0.05	0.4	0.3	0.1	
3. Get human feedback	Human selection				delete	delete		

Train Model with Explanation

Explanation Regularization = Align human explanation with model explanation

Task: SST-2 (Sentiment Analysis) / Label Space: [Positive, Negative]

	Explanation Generation & Visualization
Train Data	Explanation Generation
Train	on Train Data Pattern Aggregation + Task Explanation Visualization
Trained Model	Click instance explanation to add / remove
ative]	Click task explanation to add / remove USER
	Explanation-based Model Debugging

Step								Pred c
	Train data	I	am	а	gay	black	man	<mark>Negative</mark>
1. Train Model 2. Post-hoc Explanation	IG score ∞^c (p) toward " <mark>Prediction</mark> "	0.1	0.05	0.05	0.4	0.3	0.1	
3. Get human feedback	Human selection				delete	delete		
4. Compute ER term & 5. Re-train Model	Regularized IG score t_p^c	0.1	0.05	0.05	0	0	0.1	

Explanation Regularization (ER) loss Term

$$L_{ER} = \sum_{p \in x} (\phi^c(p) - t_p^c)^2$$

Re-train the model with ER loss term

 $L = L + L_{ER}$

Finding

95

Human explanation helps improving the model on both ID and OOD!

Train w/o explanation
Re-train w/ explanation

Conclusion: Train LMs with Context

Human explanation helps debugging & improving the model.

RQ3. Can models dynamically generate and refine context to improve their outputs?

What is a Good Question? Utility Estimation with LLM-based Simulations Dong-Ho Lee*, Hyundong Cho*, Jonathan May, Jay Pujara, In submission to ACL 2025

What is a good question ?

Hi doctor, I am 35 years old female, and I have fatigue and night sweats. What should I do?

Goal: Find info & solution quickly

Has anyone in your family sick?

What is your temperature?
What is a good question ?

Hi doctor, I am 35 years old female, and I have fatigue and night sweats. What should I do?

The Amazon rainforest, often referred to as the "lungs of the Earth," is the world's largest tropical rainforest. The rainforest plays a crucial role in regulating the Earth's climate by absorbing carbon dioxide.

Goal: Find info & solution quickly

Has anyone in your family sick?

What is your temperature?

Goal: Improve user understanding

Where is the Amazon?

What makes the Amazon rainforest important to the Earth's ecosystem?

What is a good question ?

Hi doctor, I am 35 years old female, and I have fatigue and night sweats. What should I do?

Has anyone in your family sick?

What is your temperature?

Where is the Amazon?

What makes the Amazon rainforest important to the Earth's ecosystem?

It depends on the "goal (utility)" of the question.

The Amazon rainforest, often referred to as the "lungs of the Earth," is the world's largest tropical rainforest. The rainforest plays a crucial role in regulating the Earth's climate by absorbing carbon dioxide.

Existing Works

General benchmarks?

Model	🔺 Arena Score 🔺	arena-hard-auto 🔺	MT-bench 🔺	MMLU
Gemini-Exp-1121	1305			
ChatGPT-40-latest (2024-11-20)	1361			
Gemini-Exp-1114	1344			
ChatGPT-40-latest (2024-09-03)	1339			
ol-preview	1334			
ChatGPT-40-latest (2024-08-08)	1316			
ol-mini	1308			
Gemini-1.5-Pro-002	1301			
Gemini-1.5-Pro-Exp-0827	1299			
Gemini-1.5-Pro-Exp-0801	1298			
Grok-2-08-13	1289			
Yi-Lightning	1287			
GPT-40-2024-05-13	1285	79.21		88.7
Claude 3.5 Sonnet (20241022)	1282			88.7

Indirect measure of general performance

Existing Works

Indirect measure of general performance

Indirect measure of question Saliency: Score 1~5

- 1: question is unrelated to the article.
- 5: questions related and must be answered

Expected Information Gain: reduction in uncertainty after answering a question

 $EIG(Q) = H(X) - H(X|A_1)$

Challenges of Existing Works

Indirect measure of question

High performance on indirect measures does not always lead to <u>better learner's understanding (utility)</u>.

Use the concept of ...

Generating Contextual Information for Better LM Outputs

Can we generate high-utility questions that improve learner's understanding?

QUEST: 8/18

Step 1: Learner reads a specific paragraph.

Step 2: Generate inquisitive questions to enhance learning.

Step 3: Repeat the process iteratively.

Document

Step 4: Simulate learner score after learning.

Step 4: Simulate learner score after learning.

Optimizing question generation to enhance learners' final exam performance

What happens if we optimize model to enhance learners' final exam performance ?

- Prompt-based:
 Zero-shot, Few-shot, CoT
- SFT: Train the model directly on final exam (Learn the exam's style)
- **QUEST**: Train the model to improve learner's final exam through rejection sampling.

Does utility of question correlate with indirect metrics?

Metric 1	Metric 2	Spearman Correlation	p-value
Utility	Saliency	0.097	0.003
Utility	EIG	-0.022	0.512
Saliency	EIG	0.030	0.363

No correlation between metrics:

- Each indirect metric captures different aspects of question quality.
- Indirect metrics cannot be directly translate into real-world impact.

Which questions should I answer? Salience Prediction of Inquisitive questions., Wu et al., EMNLP 2024 Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information., Rao and Daume., ACL 2018

Optimize on indirect metrics vs. Optimize on goal directly

Optimizing for goal can improve both **direct** and **indirect** metrics. However, optimizing for indirect metrics alone does not improve direct metrics. **Conclusion:** LMs can generate context to improve output

Conclusion

- Context-aware inference in language models.
 - Beyond task example based in-context learning,
 - LMs show strong capabilities in **structural extrapolation**.
 - LMs struggle with **semantic extrapolation**.
- Contextual supervision for language model training
 - Explanation as context help debugging the model behavior.
- Language models as self-refining context generators
 - LMs can generate context and use it to improve their outputs.

Future Work

What is a measurable social outcome for each application?

What is a good question ?

The Amazon rainforest, often referred to as the "lungs of the Earth," is the world's largest tropical rainforest. The rainforest plays a crucial role in regulating the Earth's climate by absorbing carbon dioxide.

Goal: Improve user understanding

Where is the Amazon?

What makes the Amazon rainforest important to the Earth's ecosystem?

Future Work

What is a measurable social outcome for each application?

What is a good recommendation ? 🔸 🔸 🖒 💷 🚳 🏠 A A 👌 🔒 www.arrszon.com/gpl/history/ref=pd_zyrrl.:: 💐 🛆 🐼 🖂 🖶 🗗 🏾 Manage history Turn Browsing History on/off 5 Schleich Red Fax Toy Figure Star Wars: The Last Jedi Porg.. The Stars Beneath Our Fee Groot Chia Pet, Guardians of the \$9.47 \$39.91 vprime \$14.89 vprime \$10.99 More like this More like this More like this More like this

What is a good infographic generation ?

Draw an infographic about neural network

Goal: Improve CTR/CVR

Goal: Improve user understanding

Future Work

Can we simulate real-world humans to evaluate such social outcome optimized AI?

Goal: Improve CTR/CVR

SanDisk Ultra 64 GB 1982 @ 41

microSDXC UHS-I Memory Card with Adapter 100MB/s, C10, U1, Full... *** 1 9,358

Hidden laver

Output

Goal: Improve user understanding

Thanks to my committee !

Jay Pujara

Xiang Ren

Robin Jia

Fred Morstatter

Meisam Razaviyayn

Thanks to my friends!

Thanks to collaborators!

Sujay Jauhar

Francesco Barbieri

Adam Kraft

Xinyang Yi

Sungjoon Park

Jihyung Moon

Hyundong Cho

Woojeong Jin

Yuchen Lin

Long Jin Nikhil Mehta Taibai Xu Lichan Hong Ed Chi Ryen White Adyasha Maharana Mohit Bansal Yuwei Fang Zhihang Zhang Wenhao Yu Deuksin Kwon etc.